Langages formels et automates – cours 4 Algorithmes d'automates, déterminisation et complémentation

Catalin Dima

Algorithmes de décision

- ▶ **Appartenence** : Étant donné un automate \mathcal{A} et un mot $w \in \Sigma^*$, décider si $w \in L(\mathcal{A})$:
 - Parcourir en largeur l'arbre de dérouelements de l'automate sur le mot w.
- ▶ Langage vide : Étant donné un automate A, décider si $L(A) = \emptyset$.
 - ▶ Tester s'il existe une paire (q, r) avec $q \in Q_0, r \in Q_f$ qui est reliée par un chemin.
 - Autrement : parcourir en largeur le graphe de l'automate, en insérant dans un ensemble Reach tous les états qui se trouvent sur une trajectoire initialisée (c.à.d. partant d'un état initial).
 - Reach est l'ensemble des états atteignables.
 - Laquelle des deux techniques est la meilleure/plus rapide?
 - ► On a aussi des états co-atteignables : des états à partir desquels on peut atteindre par une trajectoire un état final.
 - Exemples
- ▶ Langage infini : Étant donné un automate A, décider si $card(L(A)) < \infty$.
 - ► Tester s'il existe un état q atteignable, co-atteignable et qui
 - ▶ Soit contient une boucle (q, a, q),
 - Soit appartient à une composante fortément connexe ayant au moins deux éléments.

L'intersection dans la modélisation des systèmes

- Modélisation de la concurrence :
- ▶ Modèle d'automate fini pour chaque processus :

- Construire un automate pour chacun des processus, puis intersecter.
 - Automate de Mealy, transitions étiquetés par des valeurs de variables.
 - Aussi, boucles dans chaque état, provoquées par les modifications faites par l'autre processus sur ses variables.
 - ► Ajouter une étiquette indiquant que processus a exécuté l'opération.
- ► Observer s'il y a exclusion mutuelle :
 - État correspondant aux deux processus en même temps en section critique!
- Observer s'il y a interblocage :
 - État à partir duquel aucun processus ne peut avancer.

L'intersection dans la modélisation des systèmes (2)

Et maintenant la bonne solution de Dijsktra :

```
 \begin{array}{lll} \textbf{while} \ (\textit{true}) \ \{ & \textit{flag1} := \textit{true} \,; \\ & \textit{turn} := 2 \,; \\ & \textbf{while} \ (\textit{flag2} \& \textit{turn} = 2) \\ & \textbf{do} \ \textit{no-op} \,; \\ & \textit{section critique} \ 1 \\ & \textit{flag1} := \textit{false} \ ; \\ \} \end{array}
```

- Exclusion mutuelle assurée?
- ► Et l'absence d'interblocage?

Algorithmes, suite

- États inaccessibles :
 - ▶ Ne peuvent pas se trouver sur une trajectoire initialisée.
 - ▶ Donc on ne peut jamais les franchir à partir d'un état initial.
- ► Notion duale : états non-coaccessibles :
 - Ne peuvent pas se trouver sur une trajectoire qui s'arrête dans un état final.
- ▶ Élimination des états inaccessibles par parcours en largeur :
 - On part avec un ensemble S formé d'états initiaux, qui sont toujours accessibles (non?).
 - À chaque itération, on rajoute à S tous les états qui sont franchissables de S en une transition.
 - On s'arrête lorsque le nouvel S est le même que celui de l'itération précédente.
- Pareil pour les co-accessibles.

Automates déterministes et complémentation

- Il nous reste une opération importante sur les langages : la complémentation.
- ▶ Problème : on nous donne un automate $\mathcal{A} = (Q, \Sigma, \delta, Q_0, Q_f)$ et on nous demande si $\Sigma^* \setminus L(\mathcal{A})$ est reconnaissable.
- ► Supposons que A est déterministe.
 - Un seul état initial, et une seule issue de chaque état avec une lettre donnée!
 - ▶ Tout mot est donc associé à au maximum une trajectoire initialisée.
 - On peut même faire en sorte que chaque mot soit associé à exactement une trajectoire initialisée!
 - On rajoute un état puits :

Automates déterministes et complémentation

- Bien-sûr, cet état puits n'est pas co-accessible, il serait normalement inutile ...
- ... mais il va bien nous servir pour la complémentation!
- lacktriangleright δ dans un automate déterministe complet devient fonction :

$$\delta: Q \times \Sigma \longrightarrow Q$$

(elle était fonction partielle dans un automate déterministe quelconque!)

- lacksquare On peut même définir $\delta^*: Q \times \Sigma^* \longrightarrow Q$:
 - $\delta(q_0, w)$ donne l'état final de l'unique trajectoire associée à w dans \mathcal{A} .
- ▶ Complémentation : $\mathcal{A}^c = (Q, \Sigma, \delta, \{q_0\}, Q \setminus Q_f)$:
 - Puisque dans un automate déterministe complet, chaque mot est associé à une unique trajectoire initialisée,
 - un mot est accepté par $\mathcal A$ ssi $\delta(q_0,w)\in Q_f$,
 - lacktriangle ... donc un mot n'est pas accepté par ${\mathcal A}$ ssi $\delta(q_0,w)
 ot\in Q_f$,
 - ightharpoonup ... ce qui revient à dire $\delta(q_0, w) \in Q \setminus Q_f$!

Déterminisation des automates

- ▶ On prend un automate $\mathcal{A} = (Q, \Sigma, \delta, Q_0, Q_f)$.
- ▶ n voudrait construire un automate déterministe B ayant le même langage que (c.à.d. équivalent à) A)
- ▶ On suit une idée similaire à l'algorithme de test du langage vide :
 - On construit les ensembles d'états (macro-états) franchissables avec le même mot.
 - ► Construction inductive, par induction sur la longueur des mots.
 - La construction s'arrête lorsqu'on trouve, pour tous les mots de longueur n + 1, des ensembles déjà construits pour les mots de longueur inférieure.
- Il faut aussi choisir les états finaux :
 - Ce sont les macro-états qui contiennent un état final!

Déterminisation des automates : formalisation

"Subset construction"

▶ Pour construire $\mathcal{B} = (R, \Sigma, \delta', r_0, R_f)$ déterministe :

$$R=2^Q$$

Ce qu'on construit c'est des sous-ensembles d'états.

$$r_0 = Q_0$$

 $R_f = \{ S \subseteq Q \mid S \cap Q_f \neq \emptyset \}$

Car il suffit qu'une seule trajectoire franchisse Q_f

$$\delta' = \left\{ S_1 \xrightarrow{a} S_2 \mid S_2 = \delta(S_1, a) \right\}$$

lci, on a considéré que δ est une fonction :

$$\delta(S, a) = \{ q \in Q \mid \exists s \in S, q \xrightarrow{a} s \}$$

- Construire $\delta'(S, a)$ revient à prendre tous les états franchissables par une a-transition qui part d'un état de S.
- Exemples :

Déterminisation : preuve

► On peut prouver que

$$\delta'(r_0,w) = ig\{ q \in S \mid \exists
ho \ {\sf trajectoire initialis\'ee} \ {\sf associ\'ee} \ {\sf avec} \ w$$
 et qui s'arrête en $q ig\}$

- Preuve par induction sur la longueur de w.
- ightharpoonup Remarque : \mathcal{B} est complète :
 - ▶ Pour chaque $S \subseteq Q$ et $a \in \Sigma$, $\delta'(S, a)$ est bien défini,
 - ... même si parfois $\delta'(S, a) = \emptyset$.
 - \emptyset est un état *puits* : $\delta(\emptyset, a) = \emptyset$ pour tout a.
 - ▶ $\emptyset \notin R_f$.