—_—— Département Informatique | Mastére, M1 2017-2018

Proofs and Programs

TD 1 - Pure lambda-calculus

Philippe Audebaud, Aurore Alcolei

2 February 2018

HW- Short homeworks (labelled HW) are due at latest for the next Tuesday lecture, on a weekly basis.

Notations- As far as definitions or notations are concerned, always refer to lecture notes:
https://perso.ens-lyon.fr /philippe.audebaud /PnP/

Short reminder: Assume X a countable set of variables, \-terms are generated by the grammar:
a,b,...e A == zeX|lxalab

A-terms will always be considered up to a-equivalence, meaning for example that Ax.x and Ay.y are indis-
tinguishable. Here are some common combinators (closed normal A-terms):

I=Xzx T=X A yx F=dz)yy
A=)rzaxr Q=AA Y =M (Ax.f(zz)) (Ax.f(ax))

In the following, — denotes the transitive closure of the 3-reduction — g, and =4 is the equivalence relation
generated by [-reduction.

Exercice 1. (Warmup!)

a) Reduce the following terms to normal form:

I TI
AfAg.f g Az dyxy)(Az.x (A\y.y))(Az.zx)

b) Decide whether the following ([-equivalences hold:
=51l All=3FTI
z (1) =5zl (Ab. Az Ay.byx) F =5 (Ab. Az Ay.b(byx)(bry)) T
Exercice 2 (Turing completeness). The pure A-calculus is Turing-complete as a programming langage! To
prove this statement, it is sufficient to show that the following features can be encoded as A-terms:
a) booleans and conditionals (exercise 3),
b) pairs and projections (exercise 4),
c) integers together with basic operations and recursion (exercices 5 and 6).

The key idea is to mimic the operational behaviour which is expected from each of these features... With
these constructions, it is then easy to encode turing machines inside the A-calculus. This is left as an
exercise, or search references to Pablo Rauzy’s Le A-calcul comme modéle de calculabilité.

Exercice 3 (Booleans and conditionals). Informally, the set of Booleans is the finite set {true, false}.
Operationnally, their representative A-terms (T for true and F for false — see above) behave as selectors.

a) If you are familiar with ML-like language, find a common type for both combinators Tand F;

iy

https://perso.ens-lyon.fr/philippe.audebaud/PnP/

ENSL - DI Proofs and Programs 2017-2018

b) Let b,t,e € A arbitrary, and let us consider if bt e with the (expected) behaviour:
if Tte—>»t and if Fte—e

Which ML type whould you expect for if? Find a representation of if as a combinator, and check the
above specification.

c¢) Define the combinators or, not and xor.

Exercice 4 (Pairs and projections). Given a,b € A, it is easy to pack them; for instance by building the
A-term Az.x a b. Let us explore that path for building pairs:

a) Assuming a is given some type A, and b is given some type B by ML, which type would be given for
Az.xab? Find the "most general” ML type that it is possible to assign to Aa.Ab.\x.xab?

b) Deduce from the previous analysis the existence of combinators pair (constructor), m (first projection),
and 7y (second projection), with the expected operational behaviour:

71 (pair ab) »a my(pair ab) —» b

c) Let f € A. Prove the existence of a A-term ¢ (depending on f) such that
t (pair ab) — pair(fa)a

In the following, ® will stand for the combinator corresponding to the curryfied version of the above
construction. Make explicit the construction of ®, and assign a most general ML-type to it.

Exercice 5 (Church numerals). The very first idea to represent natural numbers operationally is as an
iterator, very much like inside a for-loop. Hence, a Church numeral needs an initial seed z, and a function
f which is expected to be iterated. Given n € N, let us denoted informally f'z = x and f"*lz = f(f"2).

a) Define formally the combinators representing zero (denoted Z) and the successor function (denoted S).
b) Find a combinator ¢ such that ¢ Z — T and ¢ (S n) — F (test to zero);
c¢) Define the iterator iter as a combinator with the following operational behaviour:
iter abZ=ga iter ab(Sn)=pgb(iter a bn)

And verify that if n is the Church representative for n € N, then iter a bn =g b"a.
d) Explain the choice for the S-equivalence in place of the S-reduction.
e) HW Define the addition add. (The multiplication mult is as simple as it is tricky: any idea?)
f) HW The predecessor pred can be defined using the iter combinator. Informally, the idea is as follow:

(a) the intial seed is the pair pair Z Z;
(b) the iterated function is the A-term @ introduced is the exercise 4;

(c) eventually, there remains to pick a projection...
Provide the complete definition of the combinator pred.

Exercice 6 (Recursion). Recursion means being allowed to perform unbounded iteration. Coding the
Russel paradox inside A-calculus already provides the core idea:

a) HW Given m € A, check that X m =g m (¥ m). Is it true that Y m — m (X m)?
b) HW Propose a closed A-term fact such that, for all n € N, factn =4 n!, and prove that fact2 =5 2.
c) HW Let 6 = Ax.\y.y (z = y). Prove that © = 0 § satisfies : for alle, @ e »5e (O e).

Mastere, M1 Pure lambda-calculus 2/2

